פונקציות זוגיות ואי-זוגיות

מתוך ויקיפדיה, האנציקלופדיה החופשית

פונקציות זוגיות ואי-זוגיות הן פונקציות ממשיות בעלות סימטריה מוגדרת ביחס לישר (כלומר לציר ה-).

מקור השם[עריכת קוד מקור | עריכה]

המונח "פונקציה זוגית" נטבע על ידי לאונרד אוילר, ומופיע לראשונה בספרו שיצא ב-1727,[1] והשימוש הראשון הידוע במונח "פונקציה אי-זוגית" הוא בספר של תומאס לייבורן שיצא ב-1814.[2] הסברה המקובלת היא שהכינויים "זוגי" ו"אי-זוגי" נובעים מהעובדה שהפונקציה היא פונקציה זוגית כאשר זוגי ופונקציה אי-זוגית כאשר אי-זוגי.[3][4]

פונקציה זוגית[עריכת קוד מקור | עריכה]

הגדרה: ערכה זהה עבור כל מספר בתחום ההגדרה ועבור המספר הנגדי לו, כלומר .

סימטריה: כל פונקציה זוגית היא סימטרית ביחס לציר ה-.

דוגמאות של פונקציות זוגיות:

פונקציה אי-זוגית[עריכת קוד מקור | עריכה]

הגדרה: ערכה עבור כל מספר בתחום ההגדרה הוא המספר הנגדי של ערכה עבור המספר הנגדי לו, כלומר .

סימטריה: כל פונקציה אי-זוגית היא אנטי-סימטרית ביחס לציר ה- (כלומר יש לה סימטריית סיבוב של סביב לראשית).

דוגמאות של פונקציות אי-זוגיות:

פונקציה כללית[עריכת קוד מקור | עריכה]

ניתן לייצג כל פונקציה באמצעות סכום של פונקציה זוגית ואי זוגית:

וזאת כאשר: ו


יצוג זה הוא יחיד. מכאן נובע שמרחב הפונקציות כולן מהווה סכום ישר של מרחבי הפונקציות הזוגיות והאי-זוגיות (כשחיבור וכפל בסקלר מוגדרים נקודתית).

לפעמים, עבור פונקציות מרוכבות, הפונקציה הזוגיות והאי זוגית מיוצגים בהתאמה באופן הבא:
ו-
או:
ו-

בצורת כתיבה זאת ניתן להוכיח בקלות רבה תכונות של התמרת פורייה.

תכונות[עריכת קוד מקור | עריכה]

  • סכום פונקציות:
    • סכום של פונקציות זוגיות הוא פונקציה זוגית (בפרט, בפתוח של פונקציה אנליטית זוגית לטור טיילור יופיעו רק חזקות זוגיות ובפתוח של פונקציה זוגית מ- לטור פורייה יופיעו רק איברי הקוסינוס).
    • סכום של פונקציות אי-זוגיות הוא פונקציה אי-זוגית (בפרט, בפתוח של פונקציה אנליטית אי-זוגית לטור טיילור יופיעו רק חזקות אי-זוגיות ובפתוח של פונקציה אי-זוגית מ- לטור פורייה יופיעו רק איברי הסינוס).
  • מכפלת פונקציות:
    • מכפלה של פונקציה זוגית בפונקציה זוגית היא פונקציה זוגית.
    • מכפלה של פונקציה אי-זוגית בפונקציה אי-זוגית היא פונקציה זוגית.
    • מכפלה של פונקציה זוגית בפונקציה אי-זוגית היא פונקציה אי-זוגית.
  • חלוקת פונקציות:
    • מנה של פונקציה זוגית בפונקציה זוגית היא פונקציה זוגית.
    • מנה של פונקציה אי-זוגית בפונקציה אי-זוגית היא פונקציה זוגית.
    • מנה של פונקציה זוגית בפונקציה אי-זוגית היא פונקציה אי-זוגית.

באופן כללי כל מכפלה הכוללת פונקציות זוגיות ולא זוגיות בלבד (הפונקציה היא לא זוגית), הפונקציות הזוגיות משמרות את הזוגיות, והזוגיות תלויה האם מספר הפונקציות האי זוגיות זוגי או לא זוגי.

  • הרכבת פונקציות:
    • הרכבה הכוללת פונקציות זוגיות ולא כוללת פונקציות כלליות היא פונקציה זוגית.
    • הרכבה של פונקציות אי-זוגיות היא פונקציה אי-זוגית.
    • הרכבה של כל פונקציה עם פונקציה זוגית היא זוגית, אך הרכבה של פונקציה זוגית על פונקציה כללית אינה בהכרח זוגית.
  • גזירת פונקציה:
    • נגזרת של פונקציה זוגית היא פונקציה אי-זוגית (אם אינה אפס).
    • נגזרת של פונקציה אי-זוגית היא פונקציה זוגית.
    • נגזרת של פונקציה כללית היא פונקציה כללית או זוגית.

הוכחה:הגדרת הנגזרת בנקודה , היא הגבול .

ניתן להגדיר את כ- ואת כ-

כעת נציב בגבול: . נראה שאם נחליף את הסימן של ושל נקבל לפונקציה זוגית, כלומר שסימן הגבול התחלף. ולפונקציה אי זוגית נקבל, כלומר שסימן הגבול נשמר.

  • אינטגרל של פונקציה:
    • כל פונקציה קדומה של פונקציה אי-זוגית היא פונקציה זוגית.
    • לפונקציה זוגית יש פונקציה קדומה אחת שהיא אי-זוגית - הפונקציה שבה המקדם החופשי שווה ל-0. שאר הפונקציות הקדומות הן כלליות.
    • האינטגרל המסוים של פונקציה אי-זוגית בתחום סימטרי שווה לאפס.
    • האינטגרל המסוים של פונקציה זוגית בתחום סימטרי שווה לפעמיים האינטגרל בחצי התחום הסימטרי.
  • תכונת האפס: כל פונקציה אי זוגית המוגדרת ורציפה בנקודה חייבת לקיים .

קישורים חיצוניים[עריכת קוד מקור | עריכה]

הערות שוליים[עריכת קוד מקור | עריכה]

  1. ^ Earliest Known Uses of Some of the Words of Mathematics – "ראשית יש לציין את אותן פונקציות, שאני קורא להן זוגיות, שיש להן התכונה שהן אינן משתנות כאשר במקום x מציבים -x".
  2. ^ Earliest Known Uses of Some of the Words of Mathematics,
    Thomas Leybourn, New Series of The Mathematical Repository, Volume 3, עמוד 61 (קריאת הספר בתצוגה מלאה באתר "גוגל ספרים" ספר זמין ברשת)
  3. ^ Even and Odd Functions and Function Symmetry, באתר ck-12.org
  4. ^ Even and Odd Functions, באתר Tree of Math