אטום המימן

מתוך ויקיפדיה, האנציקלופדיה החופשית
(הופנה מהדף אטום מימן)
יש לערוך ערך זה. ייתכן שהערך סובל מבעיות ניסוח, סגנון טעון שיפור או צורך בהגהה, או שיש לעצב אותו, או מפגמים טכניים כגון מיעוט קישורים פנימיים.
אתם מוזמנים לסייע ולערוך את הערך. אם לדעתכם אין צורך בעריכת הערך, ניתן להסיר את התבנית. ייתכן שתמצאו פירוט בדף השיחה.
יש לערוך ערך זה. ייתכן שהערך סובל מבעיות ניסוח, סגנון טעון שיפור או צורך בהגהה, או שיש לעצב אותו, או מפגמים טכניים כגון מיעוט קישורים פנימיים.
אתם מוזמנים לסייע ולערוך את הערך. אם לדעתכם אין צורך בעריכת הערך, ניתן להסיר את התבנית. ייתכן שתמצאו פירוט בדף השיחה.
יש להשלים ערך זה: בערך זה חסר תוכן מהותי. ייתכן שתמצאו פירוט בדף השיחה.
הנכם מוזמנים להשלים את החלקים החסרים ולהסיר הודעה זו. שקלו ליצור כותרות לפרקים הדורשים השלמה, ולהעביר את התבנית אליהם.
יש להשלים ערך זה: בערך זה חסר תוכן מהותי. ייתכן שתמצאו פירוט בדף השיחה.
הנכם מוזמנים להשלים את החלקים החסרים ולהסיר הודעה זו. שקלו ליצור כותרות לפרקים הדורשים השלמה, ולהעביר את התבנית אליהם.

אטום המימן הוא האטום של היסוד מימן. אטום מימן ניטרלי מכיל פרוטון אחד בעל מטען חיובי ואלקטרון בעל מטען שלילי הקשורים ביניהם בכח חשמלי. כ75% מהמסה של החומר הבאריוני ביקום היא מימן. אטומי מימן ריאקטיבים ומופיעים כתרכובת במולקולות רבות. מאידך, אטומי מימן בודדים נדירים בתנאי לחץ וטמפרטורה רגילים בכדור הארץ.

אטום המימן הוא האטום הפשוט ביותר בטבלה המחזורית של האלמנטים, והיה במוקד המהפיכה בסוף המאה ה- 19 ותחילת המאה ה- 20, שהובילה לפיתוחה של מכניקת הקוונטים. עקב פשטותו, ניתן לחשב בדיוק גבוה מאד את ספקטרום האנרגיות שלו במסגרת מכניקה קוונטית (ותורת השדות הקוונטים). כיוון שספקטרום האנרגיות שלו ניתן למדידה ברמת דיוק גבוהה מאד, ניתן לעמת, ולאמת, את התחזיות של מכניקת הקוונטים מול המציאות. אטום המימן במאה ה 21 ממשיך להיות רלוונטי למחקר בפיזיקה בסיסית. סטיות קטנות בין התיאוריה לנסיון עשויות להצביע על פיזיקה חדשה מעבר למודל הסטנדרטי של פיזיקת החלקיקים .

רקע היסטורי[עריכת קוד מקור | עריכה]

ציר זמן המתאר את התפתחות מודל אטום המימן בין השנים 1897 ל-1916

בשנת 1885 מצא יוהן יעקב בלמר, מתמטיקאי שויצרי, נוסחה אמפירית עבור סדרה של אורכי הגל המאפיינים את קווי הבליעה והפליטה של אטום המימן. חמש שנים לאחר מכן, הכליל יוהנס רידברג, פיזיקאי שודי, את נוסחת בלמר לכל ארכי הגל של אטום המימן, בנוסחה אמפירית

כאשר ידוע בשם הקבוע של רידברג, טבעיים (שלמים וחיובים) ו אורך הגל.

נסיונות פיזור של ארנסט רתרפורד ב1909 הראו שהאטום מורכב מגרעין זעיר מוקף בענן אלקטרוני. הפיסיקה הקלאסית, חוקי ניוטון ומכסוול, לא רק שאינה נותנת הסבר תיאורטי לנוסחה האמפירית של של רידברג, אלא אף מובילה למסקנה שאטומים אינם יכולים להיות יציבים, ובפרק זמן מזערי האלקטרון צריך היה לקרוס לגרעין.

בשנת 1913 נילס ,בוהר, פיזיקאי דני, ושלוש שנים לאחר מכן, ארנולד זומרפלד, פיזיקאי גרמני, פתחו תיאוריה קוונטית למחצה (סמי-קלאסית) שנתנה את הנוסחה האמפירית של רידברג, ובטאה את הקבוע של רידברג באמצעות קבועי יסוד של הטבע: מטען האלקטרון, מסתו, והקבוע של פלנק המאפיין את המכניקה הקוונטית. התיאוריה הסמי-קלאסית לא הייתה שלמה כיוון שלא הצליחה לתאר למשל את אפקט זימן, ולא ניתן היה להכליל אותה לאטומים מרובי אלקטרונים.

האתגר למצוא הסבר תיאורטי שלם לתכונות הספקטרום של אטום המימן הנחה את ורנר הייזנברג, ארוין שרדינגר נילס ובוהר בפיתוח של תורת הקוונטים בשנות ה 20 של המאה העשרים.

בשנת 1926 פרסם ארוין שרדינגר, פיזיקאי אוסטרי, מאמר בעיתון Annalen der Physik שכותרתו היתה "קוונטיזציה כבעית ערכים עצמיים", ובה הציע לראשונה את משואת שרדינגר, בצורה שאנו מכירים אותה היום, וחשב באמצעותה את הספקטרום של אטום המימן, שיחזר את הנוסחה האמפירית של רידברג ואת התוצאה הסמי-קלאסית של בוהר וזומרפלד.

מודל של תומסון היה המודל המקובל ביותר בין 1904 ל-1910, והקהילה המדעית התייחסה אליו כייצוג נכון של מבנה האטום. הסיבה העיקרית שהמודל היה כה פופולרי הייתה פשטותו - האטום מורכב מחלקיקים מסוג אחד בלבד, ולכן ניתן להתייחס לכל החומר בעולם כמורכב רק מסוג אחד של חלקיק. המודל גם התיימר להסביר, אם כי בצורה איכותית ולא כמותית, אפקטים פיזיקליים רבים כמו: אפקט זימן, רדיואקטיביות, האפקט הפוטואלקטרי ועוד.

מודל עוגת הצימוקים נכשל מכמה סיבות. ראשית, הוא דרש שנוזל החשמל החיובי יהיה חסר מסה וחסר צמיגות. הוא גם לא הצליח להסביר את ספקטרום הפליטה של אטומים מעוררים, אך הבעיה המשמעותית ביותר הייתה הערכתו של תומסון עצמו למספר האלקטרונים באטום. ב-1910 היה בסיס ניסויי מספק כדי לקבוע שבאטום המימן יש רק אלקטרון אחד, בהליום שניים או ארבע וכן הלאה. מיעוט האלקטרונים החזיר על כנה את בעיית יציבות האטום בשל פליטת קרינה והיווה את המכה הקשה ביותר למודל (לפי התורה הקלאסית, חלקיק טעון בתנועה מעגלית אמור לפלוט קרינה אבל אטום מימן אינו פולט קרינה כזאת). לא ניתן היה לטעון עוד כי ביצוע החישובים מסובך מדי, והמודל הישן לא תאם את המציאות.

ניסויי פיזור היו המפתח למודל הבא של האטום. מודל תומסון הצליח להסביר ניסויי פיזור של קרינת על ידי הנחה של פיזורים חוזרים מהאלקטרונים, אבל לא הצליח להסביר תוצאות של ניסויי פיזור . מודל האטום של רתרפורד, לעומת זאת, שהתבסס על ניסויי הפיזור המפורסמים של רתרפורד שנערכו במנצ'סטר ב-1908, הצליח להסביר את התוצאות בצורה טובה מאוד.

הניסוי של רתרפורד, שנערך על ידי האנס גייגר (Geiger) בסיוע ארנסט מרסדן (Marsden), היה ניסוי פיזור שבו נמדדו זוויות ההחזרה של חלקיקי (גרעיני הליום מיוננים) מלוח זהב. התוצאות העלו שחלקיק אחד מ-8,000 מוחזר מהלוח (כלומר מוסט בזווית גדולה מ-90 מעלות). תוצאות אלה לא עלו בקנה אחד עם מודל הפיזורים המרובים של תומסון. כדי שפיזור בזווית גדולה יהיה אפשרי, על הפיזור להתבצע בהתנגשות יחידה עם מסה טעונה ומרוכזת. רתרפורד הסיק שהאטום מורכב מגרעין דחוס וטעון המוקף בענן מטען בעל סימן הפוך מהגרעין. רתרפורד לא קבע את מטען הענן או הגרעין, והחישובים שלו היו תקפים לגרעין חיובי או שלילי.

חולשת המודל המקורי של רתרפורד, שפורסם לראשונה ב-1911, נובעת בין השאר מכך שהוא נמנע מהתייחסות לצורת המסלול של האלקטרונים. בלי הבנה של התנהגות האלקטרונים היה המודל חסר יכולת להסביר תופעות כימיות כמו קישור בין אטומים, ואת סדירותה של הטבלה המחזורית. הוא גם לא היווה שיפור ביחס למודל של תומסון בנוגע להסבר קווי הפליטה הספקטרליים. ב-1913 פרסמו גייגר ומרסדן את תוצאות המדידות שלהם (שכללו יותר מ-100,000 מדידות נפרדות), ההתאמה המצוינת לנוסחת הפיזור שפיתח רתרפורד בהתבסס על המודל גברו על החולשות שהיו בו, והוא הפך למודל המקובל.

הראשון שהתמודד עם בעיית המבנה של ענן האלקטרונים היה נילס בוהר. ב-1912 שלח נילס בוהר לארנסט רתרפורד מכתב המפרט את רעיונותיו לגבי מבנה האטום. מכתב זה זכה לשם "מזכר מנצ'סטר". במכתב כותב בוהר כי האטום יהיה יציב מבחינה מכנית אם מתירים לאנרגיה הקינטית של האלקטרונים להיות פרופורציונית לתדירות הסיבוב שלהם. הוא בחר את קבוע הפרופורציה כך שיהיה קרוב לקבוע פלנק. בוהר התמודד עם בעיית קונפיגורציית האלקטרונים אך עדיין לא עם ספקטרום הפליטה. במאמר מאוחר יותר, משנת 1913, התייחס בוהר גם לבעיה זו.

כדי לפתור את הבעיה, הוסיף בוהר שני פוסטולטים לתאוריה. הראשון: מצבים יציבים (סטציונריים) קיימים עבור אלקטרונים המקיפים את הגרעין ועבורם מכניקה רגילה תקפה אך אלקטרודינמיקה אינה תקפה, השני: במעבר בין מצבים סטציונריים נפלטת קרינה, בתדירות שקשורה רק להפרש האנרגיות בין המצבים. בעזרת הנחות אלה הצליח בוהר לפתח את אורכי הגל של סדרות פליטה שהיו ידועות באותו זמן: סדרת בלמר וסדרת פשן (Paschen Series). סדרות אלה התאימו למצבים הקוונטיים n=2, n=3. בנוסף לכך, הוא חזה סדרות נוספות המתאימות ל n גדול מ-4, וכן ל-n=1. את הסדרה n=1 מדד לימן (Lyman) ב-1914, והיא נקראת על שמו. הסדרה תואמת את התחזיות של בוהר.

מודל האטום של בוהר היה שאפתני למדי, הוא התיימר לטפל לא רק באטומים פשוטים דוגמת אטום המימן, אלא ניסה לבנות תאוריה כימית שלמה גם ליסודות הכבדים, וכן למולקולות פשוטות. התאוריה כשלה לראשונה בניסיונות של בוהר לתאר קשרים כימיים קוולנטיים, והתברר לבסוף שרק התפתחות מכניקת הקוונטים המלאה תסביר בצורה מספקת קשרים מסוג זה. כבר ב-1887 מדדו מייקלסון ומורלי את הפיצול בקו הפליטה האדום בספקטרום המימן. חוסר היכולת להסביר את המבנה הדק הזה בעזרת התאוריה של בוהר היה גורם משמעותי להבנה שגם מודל זה אינו מהווה הסבר מלא למבנה האטומי.

זומרפלד (Sommerfeld) עידן את המודל של בוהר ב-1916 על ידי שילוב של תורת היחסות הפרטית במודל, ובכך הצליח לחשב את הפיצול העדין בספקטרום המימן. החישובים אומתו בניסוי על ידי פשן (Paschen) בגרמניה ב-1916.

לאחר פרסום משוואת שרדינגר ב1924 שנתנה תיאור מדויק של התפתחות פונקצית הגל הקוואנטית בזמן, ניתן היה לפתור את המשוואה עבור אטום המימן. התוצאות שהתקבלו היו מדוייקות ביותר אם כי לא שונות מאילו שהשיג מודל בוהר-זומרפלד. רק לאחר פרסום משוואת דיראק שמתחשבת גם באפקטים יחסותיים, ניתן היה לשפר את הדיוק ולהתחשב גם ברכיב הספין של האלקטרון.

איזוטופים[עריכת קוד מקור | עריכה]

האיזוטופ הנפוץ ביותר של מימן, 1H הנקרא גם פרוטיום אינו מכיל נייטרונים כלל, אלא פרוטון אחד (הגרעין) ואלקטרון אחד בלבד.

נוסף ל־1H, קיימים שני איזוטופים נפוצים פחות של מימן: דאוטריום (מסומן 2H, או D) וטריטיום (מסומן 3H, או T), בעלי נייטרון אחד ושני נייטרונים בהתאמה. איזוטופים כבדים יותר של מימן נוצרים במאיצי חלקיקים ומתקיימים לשברירי שניות.

איזוטופ הדאוטוריום משמש בכורים גרעיניים כמרכיב של מים כבדים

מאפיינים מתמטיים של הפתרון[עריכת קוד מקור | עריכה]

ניתן לכתוב כל מצב של אטום המימן (התיאור הפונקציונלי של ענן ההסתברות של האלקטרון) כסופרפוזיציה של מצבים עצמיים. מצבים עצמיים הם היחידות הבסיסיות שאיתן ניתן להרכיב כל פתרון אפשרי. מצב עצמי מאופיין על ידי ארבעה מספרים קוונטיים: .

הדמיית האורביטלים (ענני הסתברות) של האלקטרון באטום המימן. הצבעים מציינים פאזה. האותיות הן סימונים מקובלים לאורביטלים עם הערכים בהתאמה. כפי שניתן לראות המסלולים נהיים מורכבים יותר ככל שעולים במספרים הקוונטיים .

מציין את מספר האנרגיה, את מספר התנע הזוויתי. מספרים אלו מאפיינים את ההתנהגות הכללית של הפתרון. מציינים את המספר המגנטי של הספין ואת המספר המגנטי בהתאמה. כפי ששמם מרמז, הם מאפיינים את התנהגות הפתרון בנוכחות שדה מגנטי. בהיעדר שדה מגנטי, לא ניתן להבחין בין פתרונות עם מספרים מגנטיים שונים.

מספר האנרגיה n[עריכת קוד מקור | עריכה]

הערך של מציין את רמת האנרגיה של האלקטרון. הוא מקבל את הערכים . כתוצאה מכך לא כל רמה אנרגטית אפשרית, אלא רמות מסוימות בלבד. הקשר בין האנרגיה לבין נתון בנוסחה:

  • נקרא קבוע רידברג. זוהי כמות האנרגיה הדרושה כדי ליינן (לשחרר) אלקטרון ברמת האנרגיה הראשונה באטום המימן.
  • – מסת המנוחה של האלקטרון
  • – מטען האלקטרון
  • קבוע פלאנק
  • פרמאביליות הריק

מספר התנע הזוויתי ℓ[עריכת קוד מקור | עריכה]

התנע הזוויתי האורביטלי של אטום המימן מקבל את הערכים ומקושר לתנע הזוויתי לפי

קבוע פלאנק המצומצם ונתון על ידי

המספר המגנטי m[עריכת קוד מקור | עריכה]

המספר המגנטי אמנם מובחן רק כאשר מופעל שדה מגנטי חיצוני, אך המשמעות הפיזיקלית שלו קשורה לגודלו של רכיב וקטור התנע הזוויתי בכיוון ציר z. ערכיו הם והקשר בינו לבין רכיב z של התנע הזוויתי הוא:

בהיעדר שדה מגנטי חיצוני, בחירת הציר היא שרירותית, ואפשר לתאר את כהיטל על כיוון כלשהו, אלא שהקונבנציה היא לבחור את ציר z. תכונה חשובה של אופרטורי תנע זוויתי היא שהם אינם קומוטטיביים (כלומר ). כיוצא בזאת, לא ניתן לדעת בו זמנית היטלים שונים של התנע הזוויתי - לא ניתן לדעת בו זמנית את (תכונה זו נובעת מעיקרון אי-הוודאות של הייזנברג). לכן היטל על ציר אחד, מספר אחד, מתאר את רכיבי התנע הזוויתי בצורה המלאה ביותר האפשרית.

המספר המגנטי של הספין ms[עריכת קוד מקור | עריכה]

האלקטרון הוא בעל ספין , לכן . גם כאן הכוונה לרכיב z של הספין, וציר זה נבחר באופן שרירותי. הקשר לרכיב z של הספין הוא:

ניוון[עריכת קוד מקור | עריכה]

המשמעות של ניוון בהקשר זה היא שפתרונות עם שונים, לדוגמה , הם בעלי אותה אנרגיה. אפשר להבין מדוע זה מתאפשר כאשר מתבוננים בביטוי לאנרגיה, הוא אינו תלוי במספרים הקוונטיים האחרים. באופן כללי, ניוון נובע מסימטריה של המערכת. זאת מפני שאופרטורי סימטריה הם חילופיים עם ההמילטוניאן. הניוון ב הוא הגורם לאפקט זימן הנורמלי והאנומלי. כאשר מפעילים שדה מגנטי חיצוני, מוסר הניוון, ומופיעות רמות אנרגיה חדשות (קווים חדשים בספקטרום האנרגיה). בנוסף, הניוון תורם לאנטרופיה של המערכת.

מקור הניוון ב-m (א')[עריכת קוד מקור | עריכה]

הניוון ב- נובע מהסימטריה תחת סיבוב של ההמילטוניאן. באופן עקרוני, תכונה זו אינה ייחודית לפוטנציאל קולומבי, אלא תנבע מכל פוטנציאל איזוטרופי (פוטנציאל שזהה בכל הכיוונים). מפני שיש סימטריה, ניתן להגדיר אופרטורים אשר חילופיים עם ההמילטוניאן. משמעות הדבר היא שמצבים שונים הם בעלי אותה אנרגיה.

במקרה של הניוון ב, האופרטורים שמגדירים הם . אלו נקראים אופרטורי העלאה והורדה או אופרטורי סולם (Ladder Operators). הפעולה שלהם היא להגדיל או להקטין את הערך של m ביחידה אחת בהתאמה. מפני שאופרטורים אופרטורים אלו חילופיים עם , יש בידינו אוסף מצבים שונים, שהם בעלי אנרגיה זהה.

מקור הניוון ב-ℓ (ב')[עריכת קוד מקור | עריכה]

הניוון ב- ייחודי לפוטנציאלים מהצורה . פוטנציאלים מוכרים מצורה זו הם: פוטנציאל קולון והפוטנציאל הגרביטציוני. בעבור פוטנציאלים מסוג זה, יש סימטריה רב ממדית, שעבורה וקטור לפלס-רונגה-לנץ נשמר. סימטריה זו היא הסימטריה שיוצרת את הניוון ב-. אופרטור הסימטריה במקרה זה הוא מרוכב, ומוגדר כ- כאשר .


פונקציית הגל[עריכת קוד מקור | עריכה]

לפונקציית הגל של אטום המימן בקואורדינטות כדוריות יש את המבנה , כאשר נקראת הפונקציה הרדיאלית ותלויה רק בקואורדינטה הרדיאלית ו נקראת הרמוניה ספרית ותלויה רק בזוויות .

הפונקציה הרדיאלית[עריכת קוד מקור | עריכה]

הפונקציה הרדיאלית של אטום המימן היא מהצורה הבאה:

הם פולינומי לגר המוכללים.

הוא רדיוס בוהר ונתון על ידי

הפונקציות הרדיאליות הראשונות

מקורות[עריכת קוד מקור | עריכה]

  • Kragh, Helge (1999). Quantum Generations. Princeton, New Jersey: Princeton University Press. ISBN 0-691-01206-7.
  • Shankar, R (1994). Principles of Quantum Mechanics. Kluwer Academic/Plenum Publisher. ISBN 0-306-44790-8.
  • Griffiths, David (1995). Introduction to Quantum Mechanics. Upper Saddle River, New Jersey: Prentice Hall. ISBN 0-13-124405-1.

קישורים חיצוניים[עריכת קוד מקור | עריכה]

ויקישיתוף מדיה וקבצים בנושא אטום המימן בוויקישיתוף

הערות שוליים[עריכת קוד מקור | עריכה]